

CS 137

Big-Oh Notation
Fall 2025

Victoria Sakhnini

P a g e 1 | 15

Table of Contents

Big-Oh Notation .. 2

Definition .. 2

Useful Theorem ... 3

More examples ... 4

More results .. 5

More properties .. 7

Let us practice ... 9

Extra Practice Problems .. 11

P a g e 2 | 15

Big-Oh Notation

Up to this point, we've been writing code without considering optimization. There are two major ways we try to
optimize code - one is for memory storage, and the one we will focus on is time complexity. One major issue is
quantifying and measuring time complexity. For example, how fast it runs is machine-dependent and depends on
everything from the processor to the operating system type. To level the playing field, we use Big-Oh Notation.

Although I am providing lots of mathematical notations and definitions, the main goal is to assess a program's worst-
case/best-case running time using big-Oh Notation without showing proof. Therefore, you do not need to memorize
the proofs or the definitions.

Definition

or more symbolically

or from another perspective, in natural language:

The functions in O(f(x)) are all such functions that grow asymptotically at an equal or slower rate to f(x).

P a g e 3 | 15

In computer science, most of our f and g functions take non-negative integers to non-negative integers, so the
absolute values are usually unnecessary. However, this concept is used in other areas of mathematics (most notably
Analytic Number Theory), so I'm presenting the general definition.

Usually, instead of g(x) є O(f(x)), we write g(x) = O(f(x)).

Note that we only care about behaviour as x tends to infinity. Indeed, we could consider x approaching some fixed a,
which is often done in analysis (calculus).

In fact, in computer science, our functions are almost always

f: N → R or even more likely, f: N → N

Useful Theorem
The following helps classify functions in terms of Big-Oh notation.

We can also use this.

P a g e 4 | 15

More examples

P a g e 5 | 15

More results

P a g e 6 | 15

P a g e 7 | 15

More properties

P a g e 8 | 15

P a g e 9 | 15

Let us practice

1) What is the runtime of the following code?

1. void printAllElementOfArray(int arr[], int size) {
2. for (int i = 0; i < size; i++)
3. {
4. printf("%d\n", arr[i]);
5. }
6. }

Answer: O(n), where n is the array's length. [n* O(1) is O(n)]

2) What is the runtime of the following code?

1. void printAllPossibleOrderedPairs(int arr[], int size) {
2. for (int i = 0; i < size; i++) {
3. for (int j = 0; j < size; j++) {
4. printf("%d = %d\n", arr[i], arr[j]);
5. }
6. }
7. }

Answer: O(n2), where n is the array's length. [n*n*O(1) is O(n2)]

3) What is the runtime of the following code?

1. int fibonacci(int num){
2. if (num <= 1) return num;
3. return fibonacci(num - 2) + fibonacci(num - 1);
4. }

Answer: O(2n). The function doubles the number of function calls for each addition to the input.

P a g e 10 | 15

4) What is the runtime of the following code?

1. void printStuff(int arr[], int size){
2.
3. printf("First element of array = %d\n",arr[0]);
4.
5. for (int i = 0; i < size/2; i++) {
6. printf("%d\n", arr[i]);
7. }
8.
9. for (int i = 0; i < 100; i++){
10. printf("Hi\n");
11. }
12. }

Answer: O(n) [first loop O(n), second loop O(1)]

P a g e 11 | 15

Extra Practice Problems

[You can discuss together answers on Piazza. I won't post solutions]

1) What is the runtime of the following code?

2) What is the runtime of the following code?

3) What is the runtime of the following code?

P a g e 12 | 15

4) What is the runtime of the following code?

5) What is the runtime of the following code?

6) What is the runtime of the following code?

P a g e 13 | 15

7) What is the runtime of the following code?

8) What is the runtime of the following code?

P a g e 14 | 15

9) What is the runtime of the following code?

10) What is the runtime of the following code?

P a g e 15 | 15

11) Winter has arrived, and we want to build a snowman, but we want it to last as long as possible. You can access
historical data regarding the snowfall amounts for each day last year. Write a C program in the snowman.c file to find
the most extended period of consecutive days in which the snowfall was increasing (i.e., the snowfall amount on each
day is greater than the previous day) and output the starting index for this period in the array (assume zero indexing).

For example:

snowfall[] = {5, 6, 7, 2, 3, 4, 8, 9, 5}

• The longest consecutive increasing sequence is {2, 3, 4, 8, 9} as it has a length of 5.
• This sequence started in the 3rd index so the function would return 3.

Write this function in O(n) time complexity and do not use any additional arrays.

	Table of Contents
	Big-Oh Notation
	Definition
	Useful Theorem
	More examples
	More results
	More properties
	Let us practice

	Extra Practice Problems

