CS 137

Big-Oh Notation

Fall 2025

Victoria Sakhnini

Table of Contents

2 1T= 2 @] T (o] - 4 o Yo NP UURURRRNt 2
D= 1o T o T RO TSP O PO PRSP 2
0= (U I I g T To =T o o O OO USP PO TOTOPRP 3
IMIOTE EXAMPIES ...vviiiieee e e ittt e e e e ettt e e e e e e e ettt eeeeeeeesse e staaaeeaasaaasestaseeaaaseaanssssasaeaeaaaasssssaseaessasansssesasasassssanssssnaaaansssnnnsnn 4
IMIOT@ FESUIES ...ttt ettt et b e s bttt et e bt e bt e she e sae e s et e s bt e bt e b e e bt e eme e e ae e e aeeems e e bt e nheesheesanesaneeane e beenneennes 5
[V oY g =l o] o] o1=T u A T= LS PP P PP PP PPPPPPPPPPPPPPRE 7
Y AU o = ol A ol PP PP PPPPPPPPPPPPPPRE 9

EXEra PractiCe PrODIEIMS ... ettt et s e s bt e st e e s bt e e aateesabe e e beeesaseesneeesabeesareeeaneeesareeaans 11

1] 15

Big-Oh Notation

Up to this point, we've been writing code without considering optimization. There are two major ways we try to
optimize code - one is for memory storage, and the one we will focus on is time complexity. One major issue is
quantifying and measuring time complexity. For example, how fast it runs is machine-dependent and depends on
everything from the processor to the operating system type. To level the playing field, we use Big-Oh Notation.

Although | am providing lots of mathematical notations and definitions, the main goal is to assess a program's worst-
case/best-case running time using big-Oh Notation without showing proof. Therefore, you do not need to memorize
the proofs or the definitions.

Definition

Big-Oh Notation

Let f(x) be a function from the real numbers to the real numbers.
Define O(f(x)) to be the set of real functions g(x) such that there
exists a real number C > 0 and a real X such that

lg(x)| < C|f(x)]| for all x > X.

or more symbolically

Big-Oh Notation

g(x) € O(f(x))
=
JCeR o IXeRVxeR (x> X = |g(x)| < C|f(x)])

or from another perspective, in natural language:

The functions in O (£ (x)) are all such functions that grow asymptotically at an equal or slower rate to £ (x) .

2|15

For example, 3x? + 2 € O(x?) since for all x > 1, we have
3x2 + 2| = 3x% + 2 < 5x? = 5|x?|.

Note in the definitions, X =1 and C = 5.

As another example 65sin(x) € O(1) since for all x > 0, we have
that
[6sin(x)| < 6]1].

In computer science, most of our £ and g functions take non-negative integers to non-negative integers, so the

absolute values are usually unnecessary. However, this concept is used in other areas of mathematics (most notably
Analytic Number Theory), so I'm presenting the general definition.

Usually, instead of g (x) e O(f (x)),wewriteg(x) = O(f(x)).

Note that we only care about behaviour as x tends to infinity. Indeed, we could consider x approaching some fixed a,
which is often done in analysis (calculus).

In fact, in computer science, our functions are almost always

f: N - R orevenmorelikely, f: N - N

Useful Theorem

The following helps classify functions in terms of Big-Oh notation.

Limit Implication

X
For positive real valued functions f and g, if lim & < 00, then
X—300 (x)
g(x) = O(f(x)). j
We can also use this.
Limit Implication
» . Lo g(x)
For positive real valued functions f and g, if le W diverges to
X o @]

infinity, then f(x) = O(g(x)).

3115

More examples

Big-Oh Notation

g(x) € O(f(x))
f—
3CeR 0 IXERVXER (x> X = |g(x)| < C|f(x)])

n

Claim: For any polynomial g(x) = Z a;ix' then g(x) € O(x").
i=0

Proof: For all x > 1, we have

lanx" 4+ ap_1x" 1+ .+ apx + ag| < |an|x" 4+ ...+ |ar|x + |ag|
< |ap|x" + ... + |a1]|x" + |ag|x"
< (lan| + ... + |a1| + |ao|)x"

and the bracket above is a constant with respect to x and we are

done.

Claim: log, x € O(log, x) for a, b > 0.

Proof: For all x > 1, we have

1

log,, a

log, x
log,, a

[log, x| = | logy, x|

and the bracket above is a constant with respect to x and we are

done.

Page 4|15

More results

In what follows (for real valued functions), let go(x) € O(fy(x))
and gi(x) € O(f1(x)). Then...

L go(x) + gi(x) € O(|fo(x)| + [f(x)])

2. go(x)g1(x) € O(fo(x) - f1(x))

3. O([fo(x)[+ [A(x)]) = O(max{[fo(x)]. [f(x)[})
Note that the last bullet is actually a set equality! I'll prove 1 and
3 on the next slides.

Also note that if fy and f; are positive functions then bullets 1 and
3 can have their absolute values removed.

Prove that go(x) + g1(x) € O(|f(x)| + |A(x)]).
Proof: Given go(x) € O(fo(x)) and gi(x) € O(f1(x)), we know
that there exists constants Cy. (7. Xp. X1 such that

lgo(x)| < Golfo(x)| Vx > Xo and lg1(x)| < G|A(x)] Vx > X;

Now, let Xo = max{Xp, X1} and C; = 2max{(y. C1} to see that
by the triangle inequality, for all x > X5,

[go(x) + &1(x)| < |go(x)] + [g1(x)
< Golfo(x)| + Ci[fi(x)|
< max{ Co, C1 }(|fo(x)| + [A(x)])
+ max{ Co. C1 }(|fo(x)| + [f(x)])
< 2max{Co, G }(|fo(x)[+ [A(x)])
< G([fo(x)] + [A(x)])

and so go(x) + g1(x) € O(|fo(x)| + |A(x)])

5] 15

Prove that O(|fo(x)| + [f1(x)]) = O(max{|fo(x)|. [fi(x)|}).
Proof: Notice that

max{|fo(x)[. [f1(x)[} < [fo(x)| + [f1(x)]
< max{[fo(x)]. [fL(x)[} + max{[fo(x)]. [f1(x)[}
< 2max{[fo(x)]. [f(x)[}

Prove that O(|fo(x)| + |f1(x)]) = O(max{|fo(x)|, |f(x)|}).

Proof Continued Using the inequalities on the previous slide, to
show C, we have that if g(x) € O(|fo(x)| + |f1(x)|), then by
definition there exists a positive real C and a real X such that for

all x > X, we have that
lg(x)] < C([fo(x)] + [A(x)]) < 2Cmax{[fo(x)[. [f(x)[}

and so g(x) € O(max{|fo(x)]. [fi(x)[})

Prove that O(|f(x)| + |f(x)|) = O(max{|fo(x)|, | (x)|}).

Proof Continued Using the inequalities on the previous slide, to
show O, we have that if g(x) € O(max{|f(x)|,|f1(x)|}), then by
definition there exists a positive real C and a real X such that for

all x > X, we have that
[g(x)| < Cmax{|fo(x)]. [f(x)[} < C(fo(x)] + A (x)])

and so g(x) € O(|f(x)| + | A (x)]).

6] 15

More properties

Transitivity
If h(x) = O(g(x)) and g(x) = O(f(x)) then h(x) = O(f(x)).

(where f, g and h are real valued functions).

Inequalities
We write f < g if and only if f(x) = O(g(x))

Growth Rates of Functions
The following is true for € and ¢ fixed positive real constants

l<logng ngc"«n<gn”

In order left to right: constants, logarithms, polynomial (if € is an
integer), exponential, factorials.

Page 7|15

® You should be aware that there are many other notations here
for runtime.

® Big-Oh notation O(f(x)) is an upper bound notation (<)
e Little-Oh notation o(f(x)) is a weak upper bound notation

(<)
® Big-Omega notation Q(f(x)) is a lower bound notation (>)

® Little-Omega notation w(f(x)) is a weak lower bound
notation (=)

® Big-Theta (or just Theta) notation ©(f(x)) is an exact bound
notation (=)

|deally, we want the Big-Oh notation to be as tight as possible (so
really we want to use © notation but it involves far too large of a
detour). In our class when you are asked for the runtime or

anything related to Big-Oh notation, make it the best possible
bound.

8| 15

Let us practice

1) What is the runtime of the following code?

1. void printAllElementOfArray(int arr[], int size) {
2. for (int 1 = 0; 1 < size; 1i++)

3. {

4 printf ("sd\n", arr[i]);

5 }

6. }

Answer: O (n) , where nis the array's length. [n* O (1) isO (n)]

2) What is the runtime of the following code?

1. void printAllPossibleOrderedPairs (int arr[], int size) {
2 for (int i = 0; 1 < size; i++) {

3. for (int j = 0; Jj < size; j++) |

4. printf ("%d = %d\n", arr[i], arr[j]);

5 }

6 }

7.}

Answer: O (n?) , where nis the array's length. [n*n*0 (1) is O (n?)]

3) What is the runtime of the following code?

1. int fibonacci (int num) {

2 if (num <= 1) return num;

3. return fibonacci (num - 2) + fibonacci (num - 1) ;
4

Answer: O (27) . The function doubles the number of function calls for each addition to the input.

Page 9] 15

4) What is the runtime of the following code?

1. void printStuff(int arr[], int size){
2.

3. printf ("First element of array = %d\n",arr[0]);
4.

5. for (int 1 = 0; 1 < size/2; i++) {
6. printf ("sd\n", arr[i]);

7. }

8.

9. for (int 1 = 0; 1 < 100; 1i++){

10. printf ("Hi\n") ;

11. }

12. }

Answer: O (n) [first loop O (n), second loop O (1)]

Page 10| 15

Extra Practice Problems

[You can discuss together answers on Piazza. | won't post solutions]

1) What is the runtime of the following code?

int alpha(char =*s) {
char =t = s;

for (;~t;t++) {
strcpy (s, t);
}

return -1;

char #u = malloc((strlen(s)+l)+*sizeof (char));

2) What is the runtime of the following code?

int beta(int n){
int s=0;
for(int i=0; i<n; 1i++){
for (int J=0; Jj<n; J++){
S

}

recturn sy

3) What is the runtime of the following code?

int gamma (int n) {
int s=0;
for(int i=0; 1<1000000; i++)/{
for(int j=0; Jj<n/10; J++) {
s++;

}

recurn sy

11| 15

4) What is the runtime of the following code?

int epsilon(int n) {
int s=0;
for(int i=0; i<n; 1i++){
for (int J=1i; j<2*n; J++){
for(int k=1i; k<3+n; k++){
S++;

}

recurn sy

5) What is the runtime of the following code?

int zeta(int al[], int n){
int s=0;
for(int i=1; i<n; ix=2){

if (a[i] ==0) return -1;
else(
s++;
}
}
return s;

6) What is the runtime of the following code?

int icta(int n){
int s=0;
for(int 1i=1; i<n; i+=2){
for (int j=i; Jj<n+*n; J++) {
s++;
}
}

recurn sy

12 | 15

7) What is the runtime of the following code?

int delta(int n, int a[n][n]){
int s=1,1i=0;
while (s < n){
if (al0][1] < 0){

S *=2;
lelse({
s += 2;

}
}

return s;

8) What is the runtime of the following code?

$#include <stdio.h>
$#include <stdlib.h>

int * add te array(int * arr, int arr length, int new int)
int * new arr = malloc(sizeof(int) * (arr length + 1))

for (int j = 0; j < arr length; j++) {
new_arr[j] = arr[jl;

}

free(arr);
new_arrl[arr length] = new_int;

return new arr;

}

vold main() {
// Express runtime in terms of n
// Here, the exact value of n is arbitrary and only
// only included for the code to compile

int n = 1000000C :

int * arr = malloc(sizeof(int));

arr[0]l = 0;
int arr size = 1;
for (int i = 0; 1 < n; i++) {

arr = add to array(arr, arr size, 1);
arr size ++;
}

free(arr);

{

Page 13|15

9) What is the runtime of the following code?

int search(int * arr, int n, int wvalue) {
// Assume arr 1is sorted in ascending order
// Assume arr has no duplicates

// Returns the index where value is located, or -1 if not found

if (n < 1)
return -.;

int mid pt = n / 2;

if (almid pt] == value)
return mid pt;

if (almid pt]l < value)
return search(arr, mid pt, value);

if (almid ptl > value) {

int sub 1 = search(arr[mid ptl, n - mid pt, value);

if (sub 1 == -1)
return -1;

return mid pt + sub i;

10) What is the runtime of the following code?

int i cant even{int n) {

for (int i = 0; 1 < n; i++) {
if (i % 2 '= 0y |
for (int j = 0; J < 1; Jj++) {

printf("sd\n", j)

Page 14| 15

11) Winter has arrived, and we want to build a snowman, but we want it to last as long as possible. You can access

historical data regarding the snowfall amounts for each day last year. Write a C program in the snowman.c file to find
the most extended period of consecutive days in which the snowfall was increasing (i.e., the snowfall amount on each
day is greater than the previous day) and output the starting index for this period in the array (assume zero indexing).

For example:

snowfall[] = {5, 6, 7, 2, 3, 4, 8, 9, 5}
e The longest consecutive increasing sequenceis {2, 3, 4, 8, 9} asithasalength of 5.
e This sequence started in the 3™ index so the function would return 3.

Write this function in O(n) time complexity and do not use any additional arrays.

15 | 15

	Table of Contents
	Big-Oh Notation
	Definition
	Useful Theorem
	More examples
	More results
	More properties
	Let us practice

	Extra Practice Problems

